Abstract
EEG-based emotion recognition has numerous real-world applications in fields such as affective computing, human-computer interaction, and mental health monitoring. This offers the potential for developing IOT-based, emotion-aware systems and personalized interventions using real-time EEG data. This study focused on unique EEG channel selection and feature selection methods to remove unnecessary data from high-quality features. This helped improve the overall efficiency of a deep learning model in terms of memory, time, and accuracy. Moreover, this work utilized a lightweight deep learning method, specifically one-dimensional convolutional neural networks (1D-CNN), to analyze EEG signals and classify emotional states. By capturing intricate patterns and relationships within the data, the 1D-CNN model accurately distinguished between emotional states (HV/LV and HA/LA). Moreover, an efficient method for data augmentation was used to increase the sample size and observe the performance deep learning model using additional data. The study conducted EEG-based emotion recognition tests on SEED, DEAP, and MAHNOB-HCI datasets. Consequently, this approach achieved mean accuracies of 97.6, 95.3, and 89.0 on MAHNOB-HCI, SEED, and DEAP datasets, respectively. The results have demonstrated significant potential for the implementation of a cost-effective IoT device to collect EEG signals, thereby enhancing the feasibility and applicability of the data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.