Abstract
Abstract. This article pioneers the fusion of advanced computer vision, and environmental science in order to be a starting point in ecological tasks and environmental benefits. Utilizing state-of-the-art tools like YOLOv7 and innovative algorithms, the study achieves unmatched accuracy in vehicle identification, classification, tracking, and speed analysis. By optimizing YOLOv7-e6e-1280 architecture using TensorRT and reduced precision, real-time analysis becomes possible without compromising accuracy. The integration of the Vanishing Point Principle for road zoning and zone-based speed calculation provides nuanced insights into driving behaviors. Detailed vehicle classification and robust tracking offer valuable data for urban planning and ecological studies. This approach increase our potential in vehicular analysis, setting new standards for research in urban development, transportation, and environmental science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.