Abstract

BackgroundIt has been estimated that automated peritoneal dialysis (APD) is currently the fastest growing renal replacement therapy in the world. However, in light of the growing number of diabetic patients on peritoneal dialysis (PD), the unwanted glucose absorption during APD remains problematic. Recent results, using an extended 3-pore model of APD, indicated that large reductions in glucose absorption are possible by using optimized bi-modal treatment regimens, having “UF cycles” using a higher glucose concentration, and “Clearance cycles” using a low concentration or, preferentially, no glucose. The present study is designed to test the theoretical prediction of a lower glucose absorption using these novel regimes.MethodsThis study is a randomized single-center, open-label, prospective study. Prevalent PD patients between 18 and 75 years old without known catheter problems or recent peritonitis are eligible for inclusion. Patients are allocated to a first treatment session of either standard APD (6 × 2 L 1.36% over 9 h) or optimized APD (7 × 2 L 2.27% + 5 × 2 L 0.1% over 8 h). A second treatment session using the other treatment will be performed in a crossover fashion. Samples of the dialysis fluid will be taken before and after the treatment, and the volume of the dialysate before and after the treatment will be carefully assessed. The primary endpoint is difference in glucose absorption between the optimized and standard treatment. Secondary endpoints are ultrafiltration, sodium removal, Kt/V urea, and Kt/V Creatinine. The study will be closed when a total of 20 patients have successfully completed the interventions or terminated according to interim analysis. A Monte Carlo power analysis shows that the study has 80% power to detect a difference of 10 g (in line with that of theoretical results) in glucose absorption between the two treatments in 10 patients.DiscussionThe present study is the first clinical investigation of optimized bi-modal treatments proposed by recent theoretical studies.Trial registrationClinicalTrials.gov identifier: NCT04017572. Registration date: July 12, 2019, retrospectively registered.

Highlights

  • It has been estimated that automated peritoneal dialysis (APD) is currently the fastest growing renal replacement therapy in the world

  • Novel cyclers allow the treatment to be varied in a multitude of ways and recently, it was shown, using a theoretical model, that automated peritoneal dialysis could be improved by using a modified “bi-modal” treatment regimen in which exchanges using no osmotic agent is alternated with short “UF exchanges” having an osmotic agent [2]

  • It is well established that fluid overload is associated with an increased mortality in PD patients [4]

Read more

Summary

Methods

This study is a randomized single-center, open-label, prospective study. Prevalent PD patients between 18 and 75 years old without known catheter problems or recent peritonitis are eligible for inclusion. Patients are allocated to a first treatment session of either standard APD (6 × 2 L 1.36% over 9 h) or optimized APD (7 × 2 L 2.27% + 5 × 2 L 0.1% over 8 h). A second treatment session using the other treatment will be performed in a crossover fashion. The primary endpoint is difference in glucose absorption between the optimized and standard treatment. The study will be closed when a total of 20 patients have successfully completed the interventions or terminated according to interim analysis. A Monte Carlo power analysis shows that the study has 80% power to detect a difference of 10 g (in line with that of theoretical results) in glucose absorption between the two treatments in 10 patients

Discussion
Background
Method
Findings
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call