Abstract

There is an exponential increase in the wireless data consumption due to the growing demands of mobile services and applications which results into overloading of the existing Wi-Fi network. One possible solution is to exploit the available visible light spectrum for communication i.e. light fidelity (Li-Fi). Li-Fi utilizes the illumination light emitting diodes (LEDs) for high-speed wireless communication. As the electromagnetic spectrum of Li-Fi does not overlap with Wi-Fi, they both can coexist to form a hybrid Li-Fi-Wi-Fi network. In hybrid Li-Fi Wi-Fi network, Li-Fi will support high data rate due to its huge unlicensed bandwidth whereas the Wi-Fi would take care of coverage at the blind spots. The performance of a hybrid system, significantly depends upon the user association and resource allocation strategies. In this paper, a downlink hybrid system with single Wi-Fi access point (AP) and four Li-Fi APs is considered and an optimization algorithm is implemented in order to determine an optimal user association strategy, which will maximize the overall system throughput while maintaining the fairness among the users. The performance of the proposed system is compared against conventional received signal strength (RSS) based method and the results are reported in terms of the system throughput and user satisfaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.