Abstract

This article presents the design optimization of an un-notched Iosipescu test specimen whose goal is the characterization of the material elastic stiffnesses of a Loblolly (Pinus taeda) or Lodgepole pine (Pinus contorta) sample in one single test. A series of finite element (FE) and grid simulations were conducted to determine displacement and strain fields for various ring angles, ring spaces, and proportions of latewood per ring. These displacement and strain fields were utilized to determine the constitutive parameters for the woody material using VFM. Using an error function based on a comparison of the input stiffnesses and those identified by grid simulation information it was possible to narrow the optimum ring angle at which test specimens should be tested. The results of this work suggest that the starting angles for the un-notched Iosipescu test specimens should be approximately 45° to produce the smallest identification error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call