Abstract

Hierarchical clews of carbon nanobelts (CsCNBs) with ultrahigh specific surface area (2300 m2 g−1) and large pore volume (up to 1.29 cm3 g−1) has been successfully fabricated through carbonization and KOH activation of phenolic resin based nanobelts. The product possesses hierarchically porous structure, three-dimensional conductive network framework, and polar oxygen-rich groups, which are very befitting to load sulfur leading to excellent cycling stability of lithium-sulfur batteries. The composites of CsCNBs/sulfur exhibit an ultrahigh initial discharge capacity of 1245 mA h g−1 and ultralow capacity decay rate as low as 0.162% per cycle after 200 cycles at 0.1 C. Even at high current rate of 4 C, the cells still display a high initial discharge capacity (621 mA h g−1) and ultralow capacity decay rate (only 0.039% per cycle) after 1000 cycles. These encouraging results indicate that polar oxygen-containing functional groups are important for improving the electrochemical performance of carbons. The oxygen-doped carbon nanobelts have excellent energy storage potential in the field of energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.