Abstract

In computer-controlled optical surfacing (CCOS), the paths of the lap tools are limited inside the optical surface; this restricts convolution in the dwell-time algorithm and causes mid-spatial-frequency surface errors. An optimized strategy ensuring relatively complete convolution of the dwell-time algorithm is developed to control the mid-spatial-frequency surface error and simultaneously ensure high optical manufacturing efficiency. Different-sized lap tools are then introduced to correct the surface error in different areas of the optics. Simulations and experiments using a large off-axis SiC mirror demonstrate the validity of the strategy, and it could be widely applied to CCOS in grinding or polishing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.