Abstract
BiFeO3-BaTiO3 based ceramics with good piezoelectric properties and high Curie temperature are potential candidates for high temperature piezoelectric actuators. In this study, a high strain value of about 0.376 % and the low strain hysteresis of 13.3 % achieved in 0.67Bi1-xSmxFeO3-0.33BaTiO3 (0.1 ≤ x ≤ 2.0) ceramics. The contribution from the E-induced nanodomains and/or PNRs wall motion by fine-tuning Sm3+ contributes the increased strain; The contribution from the converse piezoelectric effect and the electrostrictive effect enhanced with the increase of x, due to the enlarged lattice shrinkage by replacing Sm3+ with small ionic radius and subsequent lattice distortion under high electric field. The strategy to simultaneously enhance the E-induced lattice distortion and nanodomains and/or PNRs wall motion of strain and balance their fractions to reduce the strain hysteresis may provide new insights to meet the practical applications of high-precision displacement actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.