Abstract
The staggered-grid finite-difference (SGFD) method has been widely used in seismic forward modeling. The precision of the forward modeling results directly affects the results of the subsequent seismic inversion and migration. Numerical dispersion is one of the problems in this method. The window function method can reduce dispersion by replacing the finite-difference operators with window operators, obtained by truncating the spatial convolution series of the pseudospectral method. Although the window operators have high precision in the low-wavenumber domain, their precision decreases rapidly in the high-wavenumber domain. We develop a least squares optimization method to enhance the precision of operators obtained by the window function method. We transform the SGFD problem into a least squares problem and find the best solution iteratively. The window operator is chosen as the initial value and the optimized domain is set by the error threshold. The conjugate gradient method is also adopted to increase the stability of the solution. Approximation error analysis and numerical simulation results suggest that the proposed method increases the precision of the window function operators and decreases the numerical dispersion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.