Abstract

Soil moisture (SM) is an important indicator of the photosynthetic rate and growth status of crops. A few related parameters, such as the red-edge parameters and spectral indices, have been adopted for retrieving the SM of winter wheat. To further study their abilities to detect the SM, field-scale water stress experiments on winter wheat were conducted during the 2018/19 growing season. The spectral ratio index in the near-infrared (NIR) shoulder region (NSRI) (700–1100 nm) was selected by comparing the correlations between the SM and the red edge parameters and spectral indices, and it was optimized using the partial least squares regression (PLSR) method. To assess the performance of the sensitive wavebands of the NSRI in retrieving the SM, three types of spectral index models were established using multiple linear regression (MLR) for the winter wheat from the jointing to the ripening stage. The results indicate that the red-edge parameters are more sensitive to the spectral variation during the jointing and flowering stages. The sensitivity decreased with increasing water stress. The red-edge area (SDr) of winter wheat irrigated in the flowering stage (D1 treatment) and irrigated in the jointing stage (D2 treatment) decreased by 20–30%, respectively. In general, all of the parameters and indices were correlated with the surface SM (0–40 cm depth), especially for the NSRI, with a significant coefficient of determination (R2) of 0.52 in the 10–20 cm depth interval (P < 0.01). Moreover, all of the spectral index models based on the optimized NSRI have good capabilities for retrieving the SM in the jointing stage. The model for one derivative of the logarithm of the NSRI (logarithmic NSRI)' performed best, with R2 and root mean square error (RMSE) values of 0.81–0.92 and 0.17–0.89%, respectively. Finally, the (logarithmic NSRI)' model was used to retrieve the SM in the flowering–ripening stage (R2 =0.85). Overall, the optimized spectral index models can accurately and quickly retrieve the SM and can assist in predicting the effect of drought on the crop yield in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.