Abstract

This paper proposes a unified method to design an optimized type of the hysteresis modulation-based sliding mode current controller for non-minimum phase power converters in continuous conduction mode. The traditional sliding mode controlled converters have a slow transient voltage response at heavy loads, a large overshoot at light loads and during abrupt output resistance variations. To solve these problems, an optimized feedback control scheme is used according to the output resistance to adjust the coefficients of the controller. The basic idea of this controller is to suggest a new way for reduction of the sensitivity function amplitude of the closed loop system. The presented approach is developed for three basic DC/DC converters; i.e. boost, buck-boost and quadratic boost converters. Generally, the certain advantages of the suggested control approach are: (i) a fast transient response can be achieved in heavy load conditions, (ii) the voltage overshoot can be effectively reduced during load variations; (iii) the transient voltage overshoot can be eliminated in light load conditions; (iv) the closed loop control sensitivity can be reduced and therefore, the performance specification of a control system can be improved compared with the conventional sliding mode current control. To show the reliability of the suggested control scheme, simulations and experimental results for the derived systems are developed. Several conditions are performed to confirm the effectiveness of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.