Abstract

Retinal implants offer prospects of vision restoration for some blind patients by eliciting visual percepts of spots of light called ‘phosphenes’. Recently, a mathematical model has been developed that predicts patients' perception of phosphene brightness for current-driven electrical stimulation of the retina. This model is explored for different stimulation parameters on a single electrode, including safety and hardware limitations, to produce phosphenes of specified brightness. We describe a procedure to derive stimulation parameters to account for such constraints, and describe methods to construct optimal stimuli in terms of producing maximal perceived brightness and efficient generation of phosphenes of a given brightness by employing minimal energy. In both cases, it is found that the resulting optimized stimulation waveforms consist of a long stimulation period, and interphase delays between initial and charge-balancing phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call