Abstract
The development of an evanescent field sensor with an integrated Mach-Zehnder interferometric (MZI) configuration requires the fabrication of optical waveguides with two main characteristics: (1) monomode behavior and (2) high surface sensitivity for sensing biomolecular interactions in a direct way (without labels). In this paper, we present an experimental study for the optimization of the different parameters of the waveguides that will be the basis of a highly sensitive optical sensor. After optimization, an MZI sensor has been fabricated and some sensing applications are shown. The designed waveguides are based on antiresonant reflecting optical waveguide (ARROW) structures and are fabricated with standard silicon technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.