Abstract

The finger vein recognition system uses blood vessels inside the finger of an individual for identity verification. The public is in favor of a finger vein recognition system over conventional passwords or ID cards as the biometric technology is harder to forge, misplace, and share. In this study, the histogram of oriented gradients (HOG) features, which are robust against changes in illumination and position, are extracted from the finger vein for personal recognition. To further increase the amount of information that can be used for recognition, different instances of the finger vein, ranging from the index, middle, and ring finger are combined to form a multi-instance finger vein representation. This fusion approach is preferred since it can be performed without requiring additional sensors or feature extractors. To combine different instances of finger vein effectively, score level fusion is adopted to allow greater compatibility among the wide range of matches. Towards this end, two methods are proposed: Bayesian optimized support vector machine (SVM) score fusion (BSSF) and Bayesian optimized SVM based fusion (BSBF). The fusion results are incrementally improved by optimizing the hyperparameters of the HOG feature, SVM matcher, and the weighted sum of score level fusion using the Bayesian optimization approach. This is considered a kind of knowledge-based approach that takes into account the previous optimization attempts or trials to determine the next optimization trial, making it an efficient optimizer. By using stratified cross-validation in the training process, the proposed method is able to achieve the lowest EER of 0.48% and 0.22% for the SDUMLA-HMT dataset and UTFVP dataset, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call