Abstract

In this work, we focus on the Optimized Schwarz Method for circular flat interfaces and geometric heterogeneous coupling arising when cylindrical geometries are coupled along the axial direction. In the first case, we provide a convergence analysis for the diffusion-reaction problem and jumping coefficients and we apply the general optimization procedure developed in Gigante and Vergara (Numer. Math. 131 (2015) 369–404). In the numerical simulations, we discuss how to choose the range of frequencies in the optimization and the influence of the Finite Element and projection errors on the convergence. In the second case, we consider the coupling between a three-dimensional and a one-dimensional diffusion-reaction problem and we develop a new optimization procedure. The numerical results highlight the suitability of the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.