Abstract

The paper is concerned with the derivation and analysis of the optimized Schwarz type method for heterogeneous, anisotropic diffusion problems discretized by the finite element cell-centered (FECC) scheme. Differently from the standard finite element method (FEM), the FECC method involves only cell unknowns and satisfies local conservation of fluxes by using a technique of dual mesh and multipoint flux approximations to construct the discrete gradient operator. Consequently, if the domain is decomposed into nonoverlapping subdomains, the transmission conditions (on the interfaces between subdomains) associated with the FECC scheme are different from those of the standard FEM. We derive discrete Robin-type transmission conditions in the framework of FECC discretization, which include both weak and strong forms of the Robin terms due to the construction of the FECC's discrete gradient operator. Convergence of the associated iterative algorithm for a decomposition into strip-shaped subdomains is rigorously proved. Two dimensional numerical results for both isotropic and anisotropic diffusion tensors with large jumps in the coefficients are presented to illustrate the performance of the proposed methods with optimized Robin parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.