Abstract

The electron impact ionization of hydrogen, in the all-s-wave approximation, is treated by the improved distorted wave theory. The leading corrections to the distorted wave Born amplitude are calculated in the POST form, using simple variational trial functions. The localized virial conditions are imposed for the determination of nonlinear parameters, thus optimizing the scattering function of the initial state. It is shown that the singly differential cross section can be adequately described by including up to three linear parameters. The calculated cross sections agree with that of the PRIOR form, and also compare well with the existing theoretical data. Furthermore, the procedure for accuracy estimates based on the post–prior comparison is critically re-examined, showing that the DWBA comparison can lead to erroneous conclusion. The fully optimized, distorted wavefunctions are extremely simple, and should be suitable for various applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.