Abstract

Modern network services make increasing use of virtualized compute and network resources. This is enabled by the growing availability of softwarized network functions, which take on major roles in the total traffic flow (such as caching, routing or as firewall). To ensure reliable operation of its services, the service provider needs a good understanding of the performance of the deployed softwarized network functions. Ideally, the service performance should be predictable, given a certain input workload and a set of allocated (virtualized) resources (such as vCPUs and bandwidth). This helps to estimate more accurately how much resources are needed to operate the service within its performance specifications. To predict its performance, the network function should be profiled in the whole range of possible input workloads and resource configurations. However, this input can span a large space of multiple parameters and many combinations to test, resulting in an expensive and overextended measurement period. To mitigate this, we present a profiling framework and a sampling heuristic to help select both workload and resource configurations to test. Additionally, we compare several machine-learning based methods for the best prediction accuracy, in combination with the sampling heuristic. As a result, we obtain a reduced dataset which can still model the performance of the network functions with adequate accuracy, while requiring less profiling time. Compared to uniform sampling, our tests show that the heuristic achieves the same modeling accuracy with up to five times less samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.