Abstract

Quantum dynamical simulations of statistical ensembles pose a significant computational challenge due to the fact that mixed states need to be represented. If the underlying dynamics is fully unitary, for example, in ultrafast coherent control at finite temperatures, then one approach to approximate time-dependent observables is to sample the density operator by solving the Schrödinger equation for a set of wave functions with randomized phases. We show that, on average, random-phase wave functions perform well for ensembles with high mixedness, whereas at higher purities a deterministic sampling of the energetically lowest-lying eigenstates becomes superior. We prove that minimization of the worst-case error for computing arbitrary observables is uniquely attained by eigenstate-based sampling. We show that this error can be used to form a qualitative estimate of the set of ensemble purities for which the sampling performance of the eigenstate-based approach is superior to random-phase wave functions. Furthermore, we present refinements to both schemes which remove redundant information from the sampling procedure to accelerate their convergence. Finally, we point out how the structure of low-rank observables can be exploited to further improve eigenstate-based sampling schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.