Abstract
For the purpose of accuracy in detection and diagnosis, Computer-Aided Diagnosis (CAD) is preferred by radiologists for the analysis of Breast Cancer. However, the presence of noise, artifacts, and poor contrast in breast images during acquisition highlights the need for sophisticated enhancement techniques for the proper visualization of region-of-interest (ROI). In this work, contrast elevation of breast mammographic and tomographic images is performed with an improved S-Curve transform using the Particle Swarm Optimization (PSO) algorithm. The enhanced images are assessed using dedicated quality metrics such as the Enhancement Measure (EME) and Absolute Mean Brightness Error (AMBE) measurement. Although the enhancement techniques help in attaining better images, certain features relevant for diagnosis purposes are removed during the enhancement process, creating contradictions for radiological interpretation. Hence, to ensure the retention of diagnostic features from original breast tomograms and mammograms, a Discrete Wavelet Transform (DWT)-based fusion approach is incorporated, which fuses the original and contrast-enhanced images (with optimized s-curve transformation function) using the maximum fusion rule. The fusion performance is thereafter measured using the Image Quality Index (IQI), Standard Deviation (SD), and Entropy (E) as fusion metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.