Abstract

Wastewater treatment plants (WWTPs) are plagued by nonlinearities, uncertainties, and disturbances that degrade control performance and may even lead to severe instability. The WWTP control issue has received a lot of research and development during the last several decades. One well-known way of designing a resilient control system is called sliding mode control (SMC). The SMC's greatest strength lies in its innate resistance to disturbances and uncertainty. Incorporating fuzzy SMC would eliminate the chattering effect, the primary drawback of traditional sliding-mode controller, without sacrificing robustness against parametric uncertainties, modeling errors, and variable dynamic loads. This article discusses the hybridization of fuzzy logic with sliding mode control to provide highly excellent stability and accuracy in a control system. As a means of optimizing the fuzzy SMC, the gradient-free optimization technique known as the Jaya algorithm is investigated. By repeatedly altering a population of individual solutions, this population-based method can deal with both limited and unbounded optimization issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call