Abstract

Resource allocation for a downlink orthogonal frequency division multiple access (OFDMA) system ensures that capacity and throughput are maximized. In the literature, either channel coding is not considered or only a fixed code rate is specified. To overcome this problem, an optimized cross-layer resource allocation strategy that distributes the user, bit and power optimally has been proposed for adaptive modulation and coding (AMC) based single-cell downlink OFDMA systems. The proposed strategy, which is referred to as optimized user, bit and power allocation (OUBPA), considers throughput as a new cost function in terms of spectral efficiency and bit-error rate (BER) to allocate the available resources. An optimized approach is presented for solving the throughput maximization problem and simulation results demonstrating that the throughput performance of the OFDMA-AMC system using OUBPA strategy outperforms conventional techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call