Abstract
In this study, we propose a Genetic Algorithm (GA) based modular reconfigurable control scheme for an over-actuated non-linear aircraft model. The reconfiguration of the flight controller is achieved for the case of control surface faults/failures using a separate control distribution algorithm without modifying the base-line control law. The baseline Multi-Input Multi-Output (MIMO) Linear Quadratic Regulator (LQR) is optimized using GA to produce desired moment commands. Then, a GA based weighted pseudo-inverse method is used for effective distribution of commands between redundant control surfaces. Control surface effectiveness levels are used to redistribute the control commands to healthy actuators when a fault or failure occurs. Simulation results using ADMIRE aircraft model show the satisfactory performance in accommodating different faults, which confirm the efficiency of optimized reconfigurable design strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Research Journal of Applied Sciences, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.