Abstract
A redox-sensitive Grx1-roGFP2 fusion protein was introduced by transfection into single pyramidal neurons in the CA1 subfield of organotypic hippocampal slice cultures (OHSCs). We assessed changes in the GSH system in neuronal cytoplasm and mitochondria during oxygen-glucose deprivation and reperfusion (OGD/RP), an in vitro model of stroke. Pyramidal cells in a narrow range of depths below the surface of the OHSC were transfected by gene gun or single-cell electroporation with cyto- or mito-Grx1-roGFP2. To mimic the conditions of acute stroke, we developed an optimized superfusion system with the capability of rapid and reproducible exchange of the solution bathing the OHSCs. Measurements of pO2 as a function of tissue depth show that in the region containing the transfected cells, the pO2 is well-controlled. We also found that the pO2 changes on the same time scale as changes in intracranial pressure, cerebral blood flow, and pO2 during acute stroke. Determining the reduction potential, EGSH, from the ratiometric fluorescence signal requires an absolute intensity measurement during calibration of the Grx1-roGFP2. Using the signal from cotransfected tdTomato as an internal standard during calibration improves quantitative measurements of Grx1-roGFP2 redox status and allows EGSH to be determined. EGSH becomes more reducing during OGD and more oxidizing during RP in mitochondria while changes in cytoplasm are not significant compared with controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.