Abstract

It is presented an advanced approach to computing the energy and spectral parameters of the diatomic molecules, which is based on the hybrid combined density functional theory (DFT) and the Green’s-functions (GF) approach. The Fermi-liquid quasiparticle version of the density functional theory is modified and used. The density of states, which describe the vibrational structure in photoelectron spectra, is defined with the use of combined DFT-GF approach and is well approximated by using only the first order coupling constants in the optimized one-quasiparticle approximation. Using the combined DFT-GF approach to computing the spectroscopic factors of diatomic molecules leads to significant simplification of the calculation procedure and increasing an accuracy of theoretical prediction. As illustration, the results of computing the bond energies in a number of known diatomic molecules are presented and compared with alternative theoretical results, obtained within discrete-variational , muffin-tin orbitals and other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call