Abstract

Shenvi, Kempe, and Whaley's quantum random-walk search (SKW) algorithm [Phys. Rev. A 67, 052307 (2003)] is known to require $O(\sqrt{N})$ number of oracle queries to find the marked element, where $N$ is the size of the search space. The overall time complexity of the SKW algorithm differs from the best achievable on a quantum computer only by a constant factor. We present improvements to the SKW algorithm which yield a significant increase in success probability, and an improvement on query complexity such that the theoretical limit of a search algorithm succeeding with probability close to one is reached. We point out which improvement can be applied if there is more than one marked element to find.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.