Abstract

We suggest an interferometric scheme assisted by squeezing and linear feedback to realize the whole class of field-quadrature quantum nondemolition measurements, from Von Neumann projective measurement to fully non-destructive non-informative one. In our setup, the signal under investigation is mixed with a squeezed probe in an interferometer and, at the output, one of the two modes is revealed through homodyne detection. The second beam is then amplitude-modulated according to the outcome of the measurement, and finally squeezed according to the transmittivity of the interferometer. Using strongly squeezed or anti-squeezed probes respectively, one achieves either a projective measurement, i.e. homodyne statistics arbitrarily close to the intrinsic quadrature distribution of the signal, and conditional outputs approaching the corresponding eigenstates, or fully non-destructive one, characterized by an almost uniform homodyne statistics, and by an output state arbitrarily close to the input signal. By varying the squeezing between these two extremes, or simply by tuning the internal phase-shift of the interferometer, the whole set of intermediate cases can also be obtained. In particular, an optimal quantum nondemolition measurement of quadrature can be achieved, which minimizes the information gain versus state disturbance trade-off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.