Abstract

The quantitative polymerase chain reaction (qPCR) with detection of duplex DNA yield by intercalator fluorescence is a common and essential technique in nucleic acid analysis. We encountered unexpected results when applying standard qPCR methods to the quantitation of random DNA libraries flanked by regions of fixed sequence, a configuration essential for in vitro selection experiments. Here we describe the results of experiments revealing why conventional qPCR methods can fail to allow automated analysis in such cases, and simple solutions to this problem. In particular we show that renaturation of PCR products containing random regions is incomplete in late PCR cycles when extension fails due to reagent depletion. Intercalator fluorescence can then be lost at standard interrogation temperatures. We show that qPCR analysis of random DNA libraries can be achieved simply by adjusting the step at which intercalator fluorescence is monitored so that the yield of annealed constant regions is detected rather than the yield of full duplex DNA products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.