Abstract

With an anticipated growth of Bio-Circular-Green economy, the amount of lignin generated as by-product from biorefineries is increasing. Hence, lignin valorising strategies become a very interesting option to improve economic viability of the biorefineries. This study revealed the development of bioprocesses for upgrading lignin into bioplastic. Specifically, a novel strain of Pseudomonas fulva has been applied for microbial bioconversion of organosolv lignin to fermentative polyhydroxyalkanoate (PHA) production. Fed-batch fermentation of lignin-to-PHA with pulse-feeding approach was optimized using Design of Experiment. Effects of C:N ratio and feeding profiles on PHA accumulation in P. fulva were investigated to determine optimal operation. Under optimized fed-batch, the PHA concentration of 195.2 ± 6.6mg/L could be reached and the PHA content was more than 2 folds enhancement compared to batch process. Type of PHA produced was also characterized for chemical composition via GC-MS analysis. The established lignin to PHA conversion could provide platform for developing integrated lignin bioprocessing to promote cost-effective biorefineries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call