Abstract
Abstract Background Liquid-state 31P-NMR spectroscopy becomes progressively an important role for studying phosphorus (P) dynamics in soil. Soils of different origin and organic matter content were used to optimize sample preparation and re-dissolution procedures to improve characterization of P species in soil by 31P-NMR spectroscopy. The efficiency of P extraction from an untreated fresh soil was compared to that from freeze-dried and air-dried soil samples. Results A freeze-drying pretreatment not only provided the greatest extraction yields of total and organic P from both farmland and forest soils but also enhanced the intensity of signals for inorganic and organic P species in 31P-NMR spectra, except for polyphosphates. Re-dissolution of freeze-dried soil extracts in relatively dilute alkaline solution and addition of a small aliquot of concentrated HCl to the NMR tube prior to analysis improved the quality of NMR spectra. Finally, the visibility of relatively weak P signals, such as for phosphorus diesters, phosphonates, polyphosphate, phospholipids, and DNA were reproducibly enhanced when 31P-NMR spectra were generated after at least 15 h of acquisition time. Conclusion The optimized procedure presented here ensured the greatest detectability of inorganic and organic P species by liquid-state P-NMR spectroscopy in soil extracts.
Highlights
Liquid-state 31P-NMR spectroscopy becomes progressively an important role for studying phosphorus (P) dynamics in soil
It has been shown that a 0.25 M NaOH and 0.05 M EDTA extracting solution was most efficient in solubilizing a maximum range of organic P forms from sediments [26,28], while minimizing the co-extraction of Fe (III) and Mn (II) metals, which may significantly affect the resolution and intensity of 31P NMR spectra [14, 1]
The aim of this work was to set up a reproducible procedure to extract and concentrate organic P species solubilized from soil samples of different organic matter content
Summary
Liquid-state 31P-NMR spectroscopy becomes progressively an important role for studying phosphorus (P) dynamics in soil. Soils of different origin and organic matter content were used to optimize sample preparation and re-dissolution procedures to improve characterization of P species in soil by 31P-NMR spectroscopy. Due to the relatively low concentration of P compounds present in environmental compartments (soils and sediments), natural organic matter (NOM), and microbial biomass, the procedures for sample preparation for the detection of P content by NMR require a careful setup of experimental conditions, including the removal of paramagnetic species [25,27,11]. It has been shown that a 0.25 M NaOH and 0.05 M EDTA extracting solution was most efficient in solubilizing a maximum range of organic P forms from sediments [26,28], while minimizing the co-extraction of Fe (III) and Mn (II) metals, which may significantly affect the resolution and intensity of 31P NMR spectra [14, 1]. The capacity of bicarbonate dithionate (BD), EDTA, Chelex-100, and 8-hydroxyquinoline
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemical and Biological Technologies in Agriculture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.