Abstract
This study investigates how the non-thermal plasma (NTP) process leads to advanced oxidation of sewage using response surface methodology. For environmentally viable and efficient operation of the NTP process, temperature and contact time were selected as two important independent variables. Their impacts on the performance were tested following an experimental design to figure out optimal operating conditions. Based on obtained treatment efficiency, statistically optimized conditions were derived by using an approach adapting the central composite design. Results show that coupling 40 °C of temperature and 4 h of contact time demonstrate optimal performance for total chemical oxygen demand (TCOD, 59%) and total suspended solids (85%), respectively. This implies that NTP may present efficient particulate destruction leading to organic solids dissolution. Statistical analysis reveals that the contact time shows more significant dependency than the temperature on the advanced oxidation of TCOD, possibly due to dissolved organic material. For total nitrogen removal, on the contrary, the optimal efficiency was strongly related to the higher temperature (~68 °C). This work provides an inroad to considering how NTP can optimally contribute to better oxidation of multiple pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.