Abstract

A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.