Abstract

AbstractFabricating porous Si via magnesiothermic reduction is an effective way to tackle the volume expansion of Si anodes. However, the agglomeration of Si due to the local heat accumulation during the thermal reduction process severely limits its lithium storage capacity. Here, we propose a simple approach to synthesize optimized porous Si/SiC composite (pSi/SiC) spheres via modifying the precursor SiO2 of magnesiothermic reduction. After heat treatment process, in‐situ generated SiC uniformly dispersed among silicon nanoparticles, playing a crucial role in decreasing local heat accumulation, sequentially maintaining the stability of the porous spherical structure. This method not only optimized pore distribution of porous Si, but also enhanced the buffer effect of SiC. Finally, the as‐prepared pSi/SiC exhibits superior lithium storage performance (1653.4 mAh g−1 and 1446.7 mAh g−1 at 0.5 A g−1 and 1 A g−1 after 100 cycles, 1022 mAh g−1 at 2 A g−1 after 400 cycles, and 420 mAh g−1 at 5 A g−1 even after 2000 cycles). This work can provide an inspirational idea to prepare other optimized porous Si‐based anode materials through introducing various buffer materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.