Abstract

BackgroundSmall-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved.ResultsCustomization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24–0.90 mg/h per well.ConclusionsThe optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.

Highlights

  • Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development

  • The sensitivity of the substrate release to environmental factors is reduced compared to the enzymatic release, the polymer-based feeding system shows variations depending on various media properties like pH, osmotic concentration or ammonia content [14]

  • Fedbatch Microtiter plate (MTP) are produced by pouring the polymer matrix into each well of a MTP

Read more

Summary

Introduction

Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. The Ambr 15 System manufactured by Sartorius AG uses special bioreactor vessels for cultivation and automated pipetting for feeding This system provides flexible feeding profiles and almost all substrate solutions can be fed into the culture broth. Other feeding techniques like the release of sugars by enzymatic degradation of polysaccharides directly into the culture broth are easy to use but very sensitive to environmental influences [9, 10]. This system is commercially available as Enpresso from Enpresso GmbH. The sensitivity of the substrate release to environmental factors is reduced compared to the enzymatic release, the polymer-based feeding system shows (reproducible) variations depending on various media properties like pH, osmotic concentration or ammonia content [14]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call