Abstract

Nonlinear optical polymers contain molecular dipoles with very large hyperpolarizabilities in a glassy polymer matrix. Two typical examples—a guest-host system with dispersed polar dye molecules and a side-chain material with chemically attached molecular dipoles—were investigated by means of poling experiments, dielectric spectroscopy, thermally stimulated depolarization, and electro-optical thermal analysis. The dielectric behavior of both polymers can be described by the phenomenological Havriliak–Negami equation, and the existence of master curves for both materials demonstrates the validity of the time-temperature superposition principle above the respective glass transitions. Temperature-dependent mean relaxation times and relaxation-time distributions calculated from the dielectric data allow for an optimization of poling times. The dielectric relaxation strengths obtained from poling current and field, from dielectric measurements, and from thermally stimulated depolarization are in very good agreement and thus represent a useful measure of the polarization in poled polymers. From the temperature dependence of the polarization, optimal poling temperatures may be derived. Electro-optical thermal analysis yields the same temperature-stability curves as thermally stimulated depolarization and is therefore a valuable tool for investigating the stability of poled polymers, especially since it is not sensitive to charge effects. Optimal poling fields and currents must be selected as a compromise between high dipole mobilities (short relaxation times) and low bulk conductivities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.