Abstract

Regulating plant density is an important practice to improve winter wheat productivity under limited irrigation in North China Plain. Field experiments were carried out over two seasons (2014–15 and 2015–16) under three plant densities (Dh: 480–570, Dm: 360–390, Dl: 240–270 104 plants hm−2) and three irrigation levels (W0: no irrigation; W1: irrigated 80.0 mm only at the jointing stage, which also means limited irrigation; W2: irrigated 60.0 mm each at the jointing and the flowering stages). Results showed that higher numbers of spikes and higher yield were obtained at high density than that at low density under limited irrigation. Under the same irrigation, wheat culms at ripening stage and the proportion of main stem spikes increased with plant density increasing, along with the increasing of transportation amount, transportation rate, and contribution rate of pre-anthesis storage material to grain. But accumulation amount and contribution rate of post-anthesis dry matter, which was influenced by irrigation level, showed a declining trend with increasing plant density under W2 and W1. Therefore, (1) under limited water condition, yield loss could be compensated by increasing contribution rate of pre-anthesis storage material to grain with increasing plant density. (2) Meantime, under the same limited water condition, higher plant densities could promote nitrogen accumulation in grain and plant of wheat, which was significantly correlation to wheat yield. (3) Considering water and nitrogen use efficiency, medium plant density (Dm) is recommended in wet years, high plant density (Dh) may be considered to increase wheat yield in dry years.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.