Abstract

We propose and experimentally demonstrate that the lasing power and characteristic temperature (T0) of 905 nm semiconductor lasers can be optimized by use of the high strain quantum well (HSQW). To fix the lasing wavelength around 905 nm, HSQW with a higher ndium (In) content of the InGaAs gain material than that of the commonly used low strain quantum well (LSQW) requires a thickness-reduced quantum well. Thus, the HSQW has the following two advantages: stronger quantum size effects caused by the deep and thin quantum well, and higher compressive strain caused by a high In content of the InGaAs gain material. With the similar epitaxial structure, laser diodes with HSQW have a characteristic temperature T0 of 207 K and can deliver a higher lasing power with less power saturations. The high strain quantum well optimization method can be extended to other laser diodes with a wavelength near 900 nm with low In content InGaAs quantum wells and other similar low-strain gain material systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call