Abstract

The emerging high-speed Ethernet is expected to take full advantage of the currently deployed optical infrastructure, i.e., optical transport network over wavelength division multiplexing (OTN/WDM) networks. Parallel transmission is a viable option towards this goal, as exemplified by several IEEE and ITU-T standards. The optical virtual concatenation protocol in the OTN layer defined in ITU-T G.709 enables high-speed Ethernet signals to be decoupled into low rate virtual containers. The multiple lane distribution layer defined in IEEE 802.3ba facilitates the optical parallel transmission by stripping Ethernet signals into multiple low rate lanes which can be mapped onto optical channels. In this paper, we propose a new optimization framework for parallel transmission in OTN/WDM networks to support high-speed Ethernet. We formulate the parallel transmission optimization as an integer linear programming problem encompassing three sub-problems: parallel wavelength routing and assignment, usage of electronic buffering for skew compensation, and bufferless parallel transmission. To reduce computational complexity, we deploy multi-objective evolutionary optimization. The numerical results show that parallel transmission in OTN/WDM networks is feasible, and optimal solutions can be obtained with minimum resource consumption and bufferless system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.