Abstract

Using rigorous numerical methods of analysis, this paper investigates nonadiabatic nanofocusing in tapered nanorods with the major emphasis on structural optimization for achieving maximal possible local field enhancement. Simple analytical equations for the determination of the optimal length of the tapered rod are presented and discussed. It is also shown that for the considered structures, optimal taper angle and optimal length of the rod only very weakly depend on the radius of curvature of the rounded tip of the rod. Contrary to this, enhancement of the local electric field at the rounded tip strongly increases with decreasing radius of the tip. Comparison of the numerical results with the adiabatic theory of nanofocusing results in accurate verification of the applicability conditions for adiabatic approximation in tapered nanorods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.