Abstract

Beam-like members use corrugated webs to increase their shear strength, stability, and efficiency. The corrugation positively affects the members' structural characteristics, especially those governed by the web parameters, such as the shear strength, while reducing the total weight. Existing code and analytical models for predicting the shear strength of trapezoidal corrugated steel webs (TCSWs) are summarized. This paper presents an optimized Artificial Neural Network (ANN)-based model to estimate the shear strength of steel girders with a TCSW subjected to a concentrated force. A database of 206 experimental results from the literature is used to feed the ANNs. Six geometrical and material parameters were identified as input variables, and the experimental shear strength at failure was considered the output variable. Four hyperparameter optimization techniques are applied to refine the ANN models: Bayesian Optimization (BO), Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), Firefly Algorithm (FA), and African Buffalo Optimization (ABO). The performance metrics indicate that the ABO-ANN model is the most effective among these. The predictions of the developed ML model were also compared with those of existing code and analytical models. The comparisons illustrated that the ANN-based model outperforms the other existing models. The sensitivity analysis using the proposed ANN-based model captured the relationships and interactions among the geometric and material parameters and their impact on shear strength. One main finding is that the corrugation angle in the 35–45° range maximized the TCSW shear strength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.