Abstract
Abstract In this article, a hybrid approach is implemented namely, neural network training (NNT) based machine learning (ML) estimator inspired by artificial neural network (ANN) and self-adaptive neuro-fuzzy inference system (ANFIS) to tackle the voltage aggravations in the power distribution network (DN). In this work, potential of swarm intelligence technique namely particle swam optimization (PSO) is analysed to obtain an optimum prediction model with certain modifications in training algorithm parameters. In practice, when the systems are continuously subjected to parametric changes or external disturbances, then ample time is dedicated to tune the system to regain its stable performance. To improve the dynamic performance of the system intelligence-based techniques are proposed to overcome the shortcomings of conventional controllers. So, gain tuning process based on the intelligence system is a desirable choice. The statistical tools are used to proclaim the effectiveness of the controllers. The obtained MSE, RMSE, ME, SD and R were evaluated as 0.0015959, 0.039949, −0.00089838, 0.039941 and 1 in the training phase and 0.0015372, 0.039207, −0.0005657, 0.039203 and 1 in the testing phase, respectively. The results revealed that the ANFIS-PSO network model could accomplish a better DC voltage regulation performance when it is compared to the conventional PI. The proposed intelligence strategies confirm that the predicted DVR model based on NNT-ML and ANFIS has faster convergence speed and reliable prediction rate. Moreover, the simulation results show that the dynamic response is improved with proposed PSO based NNT based ML and ANFIS (Takagi-Sugeno) that significantly compensates the voltage based PQ issues. The proposed DVR is actualized in MATLAB/SIMULINK platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Emerging Electric Power Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.