Abstract

A two-dimensional Newton-Krylov aerodynamic shape optimization algorithm has been modied to incorporate the prediction of laminar-turbulent transition. Modications to the discrete-adjoint gradient computation were required to allow the optimization algorithm to manipulate the transition point through shape changes. The coupled Euler and boundary-layer solver, MSES, is used to obtain transition locations, which are then used in Optima2D, a Newton-Krylov discrete-adjoint optimization algorithm based on the compressible Reynolds-averaged Navier-Stokes equations. The algorithm is applied to the design of airfoils with maximum lift-drag ratio, endurance factor, and lift coecien t. The design examples demonstrate that the optimizer is able to control the transition point locations to provide optimum performance, in eect designing optimized natural-laminar-o w airfoils. In particular, the optimization algorithm is able to design an airfoil that is very similar, in terms of both shape and performance, to one of the high-lift airfoils designed by Liebeck (J. of Aircraft, 10:610-617, 1973) in the 1970’s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.