Abstract

With the demand for high-endurance lithium-ion batteries in new energy vehicles, communication and portable devices, high energy density lithium-ion batteries have become the main research direction of the battery industry. State of Charge (SoC), as a state parameter that must be accurately evaluated by the battery management system, enables online safety monitoring of the battery operation, and prolongs its service life. In this paper, an improved algorithm based on multi-hidden layer long short-term memory (MHLSTM) neural network and suboptimal fading extended Kalman filtering (SFEKF) is proposed for synthetic SoC estimation. First, the battery external measurable information is captured. The battery real data properties are matched with the network topology without additional battery model construction, and the battery SoC is roughly evaluated using an MHLSTM network. Then, a suboptimal fading factor is inserted into the extended Kalman filter (EKF) algorithm for iterative recursion and adaptive handling to smooth the prediction results of the MHLSTM network and enhance the accuracy of state estimation, system stability, and generality. Three customized electric vehicle (EV) driving conditions datasets are categorized into training and testing sets to fulfill the efficient estimation of synthetic SoC by the fusion algorithm and solve the time series problem. Using the maximum error (ME), mean absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), the results show that the maximum bias of the fusion algorithm to estimate the synthetic SoC is limited to within 1.2%, even under the abrupt change of the system. It can converge to the real value quickly and maintains an excellent tracking capability for data changes, reflecting the high accuracy estimation capability and the robustness possessed by the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.