Abstract

RPL (Routing Protocol for low-power and Lossy Networks) is a new attractive model that secures the networks from different routing risks. The dynamic environment and limited resources motivated the research towards identifying a stable, reliable, energy efficient, and scalable routing design. IPv6 over low-power Wireless Personal Area Network (6LoWPAN) is a standard RPL IPv6 routing protocol that provides Low power and Lossy Networks (LLNs) interoperability. In this research work, an energy efficient and optimization-based mobility management framework in RPL routing protocol was proposed (mRPL-based firefly optimization algorithm) to achieve a reliable and stable protocol. From the results, it can be inferred that the proposed system (mRPL+firefly optimizer) showed better performance with regard to the Packet_Delivery_Ratio (PDR), number of hops, End_To_End delay and power consumption when compared to existing systems: RPL, mRPL, mRPL+PSO, and mRPL+ACO. The experimental outcome showed that the proposed system improved the PDR on an average of 2.31% in comparison with existing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call