Abstract

Genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-based knockout screening is revolting the genetic analysis of a cellular or molecular phenotype in question but is challenged by the large size of single-guide RNA (sgRNA) library. Here we designed a minimal genome-wide human sgRNA library, H-mLib, which is composed of 21,159 sgRNA pairs assembled based on a dedicated selection strategy from all potential SpCas9/sgRNAs in the human genome. These sgRNA pairs were cloned into a dual-gRNA vector each targeting one gene, resulting in a compact library size nearly identical to the number of human protein-coding genes. The performance of the H-mLib was benchmarked to other CRISPR libraries in a proliferation screening conducted in K562 cells. We also identified groups of core essential genes and cell-type specific essential genes by comparing the screening results from the K562 and Jurkat cells. Together, the H-mLib exemplified high specificity and sensitivity in identifying essential genes while containing minimal library complexity, emphasizing its advantages and applications in CRISPR screening with limited cell numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.