Abstract

Purpose: The embryonic microenvironment contains many properties that have not yet been fully explored. Our aim in this study is to report an optimized and efficient method that enables investigating the effects of the secretome of pluripotent embryonic stem cells on cancer stem cells.
 Methods: The study is performed with a chimeric model consisted of mouse blastocysts, human prostate cancer stem cells and non-cancer stem cells. Ovulation induced mice were used for blastocyst collection. DU145 prostate cancer cell line was separated into cancer stem cells and non-cancer stem cells according to cancer stem cells biomarker expressions by fluorescent activated cell sorting method. Human prostate cancer stem cells and non-cancer stem cells were microinjected into 4-day blastocyst culture in vitro by intracytoplasmic sperm injection method.
 Results: Chimeric models provide us great convenience in basic oncological studies. In this study, using a chimeric model, we were able to study the secretome of mouse embryonic stem cells and their effect on cancer stem cells. The method is efficient and yield promising result; and could be used to study the effects on other cells as well.
 Conclusion: The embryonic stem cell microenvironment is suggested to have a great regenerative capacity which is, nowadays, the center of attraction for cancer research studies. Ethical issues restrict the human embryo studies, however, mimicking the in vivo human microenvironment with 3D cell cultures or bioprinting are now possible. Finally, optimization of new methods including 3D cell cultures with human cell lines will be a great opportunity for better understanding the reprogramming notion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call