Abstract
Short-Duration Voltage Variations (SDVVs) are the power quality disturbances (PQD) that mainly affect industrial systems, and are originated for various reasons, in particular short circuits over large areas, even those originating in remote points of the electrical system. The location problem aims to indicate the area or region or distance from the substation that is connected to the source causing the voltage sags, and is a fundamental task to ensure good power quality. One of the strategies used to determine the location of sources causing SDVVs and for an implementation of machine learning algorithms in modern distribution networks, called Smart Grids. Monitoring a Smart Grid plays a key role, however mostly it generates a large volume of data (Big Data) and as a result, multiple challenges arise due to the properties of this data such as volume, variety and velocity. This work presents an optimization through genetic algorithm to select meters which already exist in the Smart Grid, using a voltage sag location method in order to reduce the data obtained and analyzed throughout the localization process. Optimization was evaluated through a comparison with a non-optimized localization method, this comparison showed a difference between the hit rates of less than 1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.