Abstract

Simulations demonstrate that undoped yttrium iron garnet (YIG) seedlayers cause reduced Faraday rotation in silicon-on-insulator waveguides with Ce-doped YIG claddings. Undoped seedlayers are required for the crystallization of the magneto-optical Ce:YIG claddings, but they diminish the interaction of the Ce:YIG with the guided modes. Therefore, new magneto-optical garnets, terbium iron garnet (TIG) and bismuth-doped TIG (Bi:TIG), are introduced that can be integrated directly on Si and quartz substrates without seedlayers. The Faraday rotations of TIG and Bi:TIG films at 1550 nm were measured to be +500°/cm and −500°/cm, respectively. Simulations show that these new garnets have the potential to significantly mitigate the negative impact of the seedlayers under Ce:YIG claddings. The successful growth of TIG and Bi:TIG on low-index fused quartz inspired novel garnet-core waveguide isolator designs, simulated using finite difference time domain methods. These designs use alternating segments of positive an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call