Abstract

The optical properties of ZnO/Ag/ZnO (ZAZ) multilayer structures were numerically modeled and calculated by a FDTD method. Such tri-layers were also manufactured using an ion beam sputtering plant. A good agreement is obtained between modelizations and realizations. The impact of the oxide thicknesses on the optical properties of the ZAZ structures were experimentally and numerically investigated, and allow us to adjust the spectral position of the transmission maximum. The transmission of these structures is optimized up to around 74%, on the whole absorption spectral range of the photoactive P3HT:PCBM bulk heterojunction. The best electrode design is glass/ZnO (30nm)/Ag (14nm)/ZnO (30nm), which presents a sheet resistance of 7Ω/□. The optimized ZAZ structure was successfully integrated in an organic solar cell as anode. A photovoltaic efficiency of 2.58% is obtained and is compared to an organic solar cell integrating a traditional ITO anode with an efficiency of 2.99%. Numerical calculations of the intrinsic absorption inside each layer of the organic solar cells are performed. Alternative ITO-free electrodes for organic solar cells are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.