Abstract

Alkali treatment followed by alkalinized hydrogen peroxide delignification yielded 73.90% cellulose from Ensete ventricosum pseudo stem fibre, with parameters optimized using response surface methodology. The optimal reaction parameters were 157 min, 73 °C, and 3.8% NaOH concentration. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transfer infrared (FTIR), and scanning electron microscopy were used to examine the thermal properties, crystal structure, chemical structure, and morphological structure of isolated cellulose (SEM). Based on the findings, cellulose has a rod-like shape. The XRD results revealed that the crystallinity index of cellulose increased from 65 to 75% when compared with raw E. ventricosum pseudo stem fibre (Ensete fibre). The resultant cellulose demonstrated relatively higher thermal stability than the unprocessed ensete fibre, according to the thermogravimetric examination. When compared to raw ensete fibre, FTIR analysis revealed that cellulose had a modified chemical functional structure, which suggested that alkali and alkalized hydrogen peroxide treatments had altered the chemical structure of cellulose. As a result of the isolated cellulose’s high yield, high crystallinity index, good thermal stability, and morphological structure, cellulose nanocrystals can be extracted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.